Search results for "Tapes philippinarum"
showing 5 items of 5 documents
Economic modelling as a tool to support macroalgal bloom management: a case study (Sacca di Goro, Po river delta)
2003
During the last 20, years, intensive mollusk farming has been developed in coastal waters, mostly in sheltered bays and lagoons. Often, mollusk stocks are threatened by frequent anoxic events from macroalgal blooms. Here, a decision support tool is described to select the optimal short-term strategy to control algal biomasses. Even though long-term and detailed studies of the lagoon systems are required to provide reliable, biologically based policies, we have here developed a simplified analysis that overlooks most of the ecological complexity, but explicitly includes environmental variability and uncertainty in parameter estimation in the economic assessment of the performances of differe…
Data from: Phylogenomics of Lophotrochozoa with consideration of systematic error
2021
Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of sys…
Data from: Phylogenomics of Lophotrochozoa with consideration of systematic error
2016
Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of sys…
Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation
2016
Ocean acidification is likely to have profound impacts on marine bivalves, especially on their early life stages. Therefore, it is imperative to know whether and to what extent bivalves will be able to acclimate or adapt to an acidifying ocean over multiple generations. Here, we show that reduced seawater pH projected for the end of this century (i.e., pH 7.7) led to a significant decrease of shell production of newly settled juvenile Manila clams, Ruditapes philippinarum. However, juveniles from parents exposed to low pH grew significantly faster than those from parents grown at ambient pH, exhibiting a rapid transgenerational acclimation to an acidic environment. The sodium composition of…
Seawater carbonate chemistry and growth, physiological performance of the Manila clam Ruditapes philippinarum
2018
Ocean acidification may interfere with the calcifying physiology of marine bivalves. Therefore, understanding their capacity for acclimation and adaption to low pH over multiple generations is crucial to make predictions about the fate of this economically and ecologically important fauna in an acidifying ocean. Transgenerational exposure to an acidification scenario projected by the end of the century (i.e., pH 7.7) has been shown to confer resilience to juvenile offspring of the Manila clam, Ruditapes philippinarum. However, whether, and to what extent, this resilience can persist into adulthood are unknown and the mechanisms driving transgenerational acclimation remain poorly understood.…